Koszul-Young Flattenings and Symmetric Border Rank of the Determinant

نویسنده

  • Cameron Farnsworth
چکیده

We present new lower bounds for the symmetric border rank of the n × n determinant for all n. Further lower bounds are given for the 3 × 3 permanent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flattenings and Koszul Young flattenings arising in complexity theory

I find new equations for Chow varieties, their secant varieties, and an additional variety that arises in the study of complexity theory by flattenings and Koszul Young flattenings. This enables a new lower bound for symmetric border rank of x1x2⋯xd when d is odd, and a new lower complexity bound for the permanent.

متن کامل

Explicit polynomial sequences with maximal spaces of partial derivatives and a question of K. Mulmuley

We answer a question of K. Mulmuley: In [5] it was shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this “no-go” result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with ...

متن کامل

A $2n^2-log(n)-1$ lower bound for the border rank of matrix multiplication

Let M ⟨n⟩ ∈ C n 2 ⊗C n 2 ⊗C n 2 denote the matrix multiplication tensor for n × n matrices. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to prove the border rank lower bound R(M ⟨n,n,w⟩) ≥ 2n 2 − ⌈log 2 (n)⌉ − 1.

متن کامل

Border Ranks of Monomials

Young flattenings, introduced by Landsberg and Ottaviani, give determinantal equations for secant varieties and provide lower bounds for border ranks of tensors. We find special monomial-optimal Young flattenings that provide the best possible lower bound for all monomials up to degree 6. For degree 7 and higher these flattenings no longer suffice for all monomials. To overcome this problem we ...

متن کامل

Tensor rank is not multiplicative under the tensor product

The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an `-tensor. The tensor product of s and t is a (k + `)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1505.05079  شماره 

صفحات  -

تاریخ انتشار 2015